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Classification and Enumeration of Minimum (d, 2, 3)-Graphs for 0dd d

VICTOR KLEE

University of Washington, Seattle, Washington

A (d,c,v)-graph is a c-connected graph of diameter d in which
each node is of valence v. A minimum (d,c,v)-graph is one with the
minimum number of nodes. In [4], minimum (d,c,v)-graphs are
constructed for all d, ¢ and v. In [5] the minimum (d,1l,3)-graphs
and minimum (d,2,3)-graphs are classified and counted. These tasks

are performed here for the minimum (d,3,3)-graphs when d is odd.

The main result is that if & (13 = v129)/2, n = (13 + /20)/2, and

J g d
B = __-—__n g =

J J-1 (=102
; GL)das = 20 i-1)
n - §

d=3
e R A

then the number of (isomorphism types of) minimum (d,3,3)-graphs is

equal to
: v '5‘ el - bl = o uj—?
ft23 =~ 5%24-2 * Ty 2223_l + 158, 5
when d = 4j + 129 and to
: 2 3 - S T v e e e |
$%95-1 = 5% T A%y T Tyt S8y - SRl
when d = U4j + 3 2 7.

The methods used here can be adapted to yield information about the
number of minimum (d,3,3)-graphs when d is even, but the precise
determination of that number would seem to require additional ideas
not included here. In any case, even values of d are ignored except

in the first section of the paper.
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1. SEINES AND ROOTED SEINES

In a connected graph G, two nodes x and y form a diametral
pair if the G-distance 6G(x,y) is equal to the diameter &(G).
Diametral pairs are unordered unless otherwise specified. A diametral
node is one that belongs to a diametral pair. Two or more paths are

independent if any node common to two of the paths is an end of both.

When n 1is even, a simple n-seine is a 3-valent graph of diameter

d =n+ 1 formed from three independent paths A, B and C of length d
Joining the two nodes of a diametral pair, together with the 3n/2
edges of a matching that covers all intermediate nodes of the paths.
The same definition applies when n is odd, except that then two paths
are of length d, one is of length d + 1, and there are (3n + 1)/2

edges in the matching. When n 1is odd, a split n-seine is a 3-valent

graph of diameter d = n + 1 formed from three independent paths of
length d Jjoining the two nodes of a diametral pair, together with an
additional node =z and the (3n + 1)/2 edges of a matching that
covers 2z and all intermediate nodes of the paths. It is easy to
verify that simple n-seines exist for all n > 1 and split n-seines
exist for all odd n > 1. The numbers of (isomorphism types of) split
l-seines, simple l-seines and simple 2-seines are respectively 1, 1 and

2. See Figures 1 and 2.

(Figure 1 is to be inserted here)

Fig. 1: The split l-seine and the simple l-seine

(Figure 2 1s to be inserted here)

Fig. 2: The two simple 2-seines
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1.1 THEOREM When d is odd, a graph is a minimum (d,3,3)-graph if

and only if it is a simple (d - 1)-seine. When d 1is even, a graph

is a minimum (d,3,3)-graph if and only if it is a split (d - 1)-seine

or a simple (d - 1)-seine.
Proof. Note first that all simple n-seines and all split n-seines
are 3-connected. That is, for any two nodes p and q of such a graph

S, P and g are not separated by any pailr of nodes off §. To prove

this, consider separately the cases in which {p,q} intersects the

diametral pair {x,y}, in which p and q are intermediate nodes of
the same path A, B or C, and in which p and gq are intermediate
nodes of different paths. Consider also, for split n-seines, the case
in which the extra node =z °‘is p oer gq. In each case the argument is
straightforward.

To complete the proof, consider an arbitrary diametral pair {x,y}
in a 3-connected graph G of diameter d. Each path joining x and
¥ hasiat least d-1 intermediatie nodes, and sinee x & and 'y are
joined by three independent paths there are at least 3d-1 nodes in
alkl., If, Iin addition, d  1s even and G 1is 3=-valent then there are
at least 3d nodes because odd-valent graphs are of even order. But in
view of the preceding paragraph, a minimum (d,3,3)-graph has at most
3d-1 nodes when d 1s odd and at most 3d nodes when d is even. The
desired conclusion follows readily. [

Because of 1.1, the minimum (d,3,3)-graphs are henceforth called
(d - 1)-seines. Thus all (d-1l)-seines are simple when d i1s odd,

and are simple or split when d 6 1is even. A rooted n-seine 1s an

ordered triple (S,x,y), where S 1is an n-seine and (x,y) 1is an
ordered diametral pair of nodes of S. Two rooted n-seines (S,x,y)
and (S¥*,x*,y*) are isomorphic if there is a graph isomorphism of S

onto S* that carrles x and y. onto x* and y*




T

TST—

respectively. (When S is a l-seine or 2-seine, S has at least
two diametral pairs and hence yields at least four distinct rooted
seines, but all rooted seines associated with S are isomorphic.)
In all that follows, the distinction between rooted seines and unrooted

seines is essential. A seine not specifically described as rooted is

assumed to be unrooted.
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2. THE NUMBER OF ROOTED (d - 1)-SEINES FOR ODD d

Henceforth there is the

STANDING HYPOTHESIS: d4 = n + 1, where n 1is an even Iinteger > 2.

Let Q denote the infinite graph formed f{rom threee paths

(X,pll,pl2,---), (x,p2l,p22,...) and (x,pgl,p32,...) which are

pairwise node-disjoint except for having the same initial node x.
For each positive integer k let Qk denote the subgraph of @

k 2 < :
spanned by {x} v (UlPi)’ where P, = {pli’p2i’p3i}' A k-start
is a graph T formed by adding to Qk the edges of a matching M
such that

]
(a) each member of M joins two points of UfPi not joined in Qk’
(b) each point of "T‘lPi is covered by M, and

(c¢) GT(x,plk) = GT(x,p2k) = 6T(x,p3k) = k, where § 1is the usual
graph-theoretic distance.
A consequence of (a) and (c) is that if {pRi’pmi} e Mo "then 2 # m

.and |1 - | < 1. This and the following fact are used frequently

without explicit reference.

2.1 PROPOSITION Every automorphism of a k-start T carries

x onto x and carries P, onto P, for 1 <1 < k.
Proof. Note that Pk i8 the set of all nodes of T-valence <2,
and that for 1 <1 <k, P, 1s the set of all nodes at T-distance

k - i from Pk' I

When T 1is a k-start, a node p e P is matched or unmatched

Kk
in T according as its T-valence 18 2 or 1. The ¢nd set of' T is

the set of all » ¢ {1,2,3} such that is matched in T. The

Prr
cardinality p(T) of T's entl set is called the reasch of T. The
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end group of T 1is the group of all permutations = of {1,2,3}
such that T admits an automorphism (a graph isomorphism of T onto

T) carrying pkr onto for » e {1.,2,3). The cavdinality

Pn(r)
a(P) of PUs end group 1s called the style of T. Plainly

o(T) € {1,2,3,6}, for the end group is a subgroup of the symmetric
group S3. Figure 3 shows all isomorphism types of k-starts for

k < 3. Under each example the pair p(T), o(T) is shown.

(Figure 3 is to be inserted here)

Fig. 3: Examples of all isomorphism types of k-starts for k < 3

Por each pair of integers r & 10,1,2,3} and s ¢ {1,2,3,6},
let grs(k) denote the number of isomorphism types of k~starts of
reach r and style s. Note that the number of isomorphism types of
rooted n-seines is

(g31 i €'32 + g33 + 836)(n)

We now proceed by recursion to determine the various functions Bpg*

2.2 PROPOSITION Of the sixteen functions Zng for e 10,152,310
and s € {1,2,3,6}, all but €01° B> B110 Foys Bops EB3p and E3g

are identically 2zero.

Proof. To see that Bp3 = Bpg = i, note that if (1,2} 18 the
end set of a k-start T then each automorphism of T 1s the identity
or ant NgE
on Pk nterchanges pkl and Pyo -
That 812 © g13 * 816 " 0 follows from valency and distance
considerations. Suppose, for example, that (1} 1is the end set of

a k-start T and } 1s an edge of T. Then the

Pr-1)2°P12
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T-valence of Pi1 is 2 while that of Pyo and Py 3 dg i ATS0
the T-distance from Pyl a2 Ron Pyo and = > 2 fop Py3- Hence
each automorphism of T 1s the identity on Pk'
That 8p2 = g03 = g32 = g33 = 0 follows from an induction that
is based on the initial conditions
€8) ggefll = g5501) = 3, g (1) =0 for &1l (r,s) £ 1(0,6),(2,2}}

in conjunction with the observation that for all k > 1,

(b) gos(k + 1) g3s(k) for all g, and

(e) g3s(k + 1) gOS(k) for all s # 1.

To establish (b), use 2.1 to verify that if a k-start of reach 3 and
a (k+l)-start of reach 0 are associated with the same matching M
then they have the same end group. For (c), consider an arbitrary
(k+l)-start T of reach 3 and style s # 1, and let ¢ be an

automorphism of T that is not the identity on Pk+l' iia

{p(k+l)l’p(k+l)2} is an edge of T then ¢ carries onto

P(k+1)3
itself and interchanges p(k+1)l and p(k+1)2, whence ¢ 1interchanges

Pr1 and Pyoe A contradiction then arises from the fact that precisely

one of P and Pyo is joined to It follows that no edge

Price1)s’

¢¥ T Jgolns TWo polnts of ¥ whence T 1s formed from a k-start

T i
TY  of reach 0 'by adding, fol* each 'p € Py, a node qp that is not
joined to p but is joined to both members of Pk Nl Bhen
and T' have the same end'group, and (¢) follows. [

The order of the s 1in the next result 1s chosen so as to

!
g1"S

simplify a later computation.

2.3 PROPOSITION For each positive integer k let the column vector

Zy be the transpose of

e e e g, i e




2.4

(g06(k),g22(k),g01(k),ﬁll(k>,g3l(k),a36(k),g21(k)).

Then 2z, ., = Az, where A 1is the matrix

ro . . . . 1 .
. . . l . .
L . . . l . .
. l . . . . 2
. ]k 2 . . . 2
1 - - . . . .

h. . . 2 3 . lJ

Proof. The first and third rows are justified by (b) above,
the sixth by (¢). For the fourth row, note that each (k+l)-start T
of reach 1 1s alseo of style 1 by 2.2, and T has as subgraph a
k-start of reach 2. Each k-start of reach 2 and style 1 <resp. 2>
yields 2 <resp. 1> isomorphism types of (k+l)-starts of reach 1.

To justify the fifth row of A, note that g,;(k+l) <resp. 2g01(k)>
is the number of isomorphism types of (k+l)-starts of reach 3 and
style 1 in which there is <resp. is not> an edge joining two nodes

o =P Then use the fact, provided by A's fourth row, that

ekl
g1 (k+1l) = 2g51(k) + g55(k).

For the second and seventh rows of A, consider an arbitrary
(k+l)-start T of reach 2. If two nodes of P, ., are joined in T
then T has as subgraph a k-start T' of reach 3 and it follows
with the aid of 2.2 that the style of T' 1is 1 <resp. 6> when that
of T 1s 1 <resp. 25. Further, each k-start of reach 3 and style

1 <resp. 6> yields 3 <resp. 1> isomorphism types of (k+l)-starts of

reach 2 and style 1 <resp. 2>. If no edge of T Jjoins two nodes of

Pk+l then T has as subgraph a k-start T' of reach 1 whose
style 15 &iso I by 2.1, Each such T' ylelds 2 <resp. 1> isomorphism
types of (k+l)-starts of reach 2 and style 1 <resp. 2>. I

e oy A e ot e T




2.4 THEOREM Let & = (13 - v/1I29)/2, n = (13 + /129)/2, and for

each positive integer j let

B = (dy139-110(1-2)/2

1-j
ek - z1 <sodd 1513

Then the functions Bps that are not identically 0 are as tabulated

below.

I
E(l + 3Cj) - 8Cj-l +

1
=(=1 + 15%,) - 31z, + 20T,
2( (J) D J-

A 2

3 - h
5(1 + Cj”) 23CJ. + 726J._ MOCJ._

1 2

3
3(-1 + 3§j) - SCj—l
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Proof, ' Let A Dbe the matrix of 2.3. A Pirst Inspection
shows that 0 1is an eigenvalue of A with associated eigen-
vector (0,2,0,0,0,0,-1)%. When A # 0 the matrix A - AI

is row-equivalent to the matrix

PR ey e e
S : 4 : ] :
g P, . 1 . :
» : - 1-}\2 . T 2\
- B » 1 2—%2 1 2A
. . . . . 1y}\2 .
! . & . 2 3 . _AJ.

Hence 1 and -1 are eigenvalues of A, and associated eigen-

vectors turn out to be (2,3,-—1,1,—1,2,—1)t and (2,3,-1,-1,1,-2,-1)

v

- 2 i PO : :
respectively. When X°¢ {0,1,2 the matrix M is row-equivalent
to the upper triangular matrix whose first four rows are those

of M and whose lower right 3»3 minor is

T

p L L he
It follows that when X e {—&6,52,—n2,n“}, A

) ) )
(1-A) (2-2%) = ~2)
>
, 1~ . ¢
Y a2 i
; b % '~1 30 “410 i
b ) ]
is

an eigenvalue !

of A with associated eigenvector E
3

2 !
(0, ¥ 5, AP, N e R, BAE why, ;
A
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where Yo = 12 ~F2m U8,

There is now enough information to diagonalize A "by means
of a similarity transformation, but it is computationally
more convenient to work with A2 instead.

The eigenvalues of A2 gre T ul Sl SSE iand e and Tor
all but the first of these an independent pair of eigenvectors
is avallable. Replacing each of these pairs with half of its
sum and half of its difference, thereby obtaining other inde-
pendent eigenvectors for the eigenvalue in question, and
arranging the seven eigenvectors in an order that is convenient

for subsequent computation, yields the matrix

r 2 - . - L - .
2 . . .
3 wg wn
]l . £ . . . n
3 1 3 1
B = 3 2 i 5/2 2{) n/z_zn/z B .
g 3
¥ . . . g/? n 2 -1 .
. . . . . 2 .
-1 al L 5&—“ . . . ‘:~|n_u
- 3 4.
The columns of B are eigenvectors of A~ assoclated with
the respective eigenvalues 1,0,&,&8,n,1,n. By a standard result

on diagonalization of matrices,

A = BB

where P

D= diag (1, O, g’ ‘:9 n’ 1, n)' ‘

For each integer J > 0O, :




2.8
1 S R |
Z2,j+1 A zl = BDYB zl.
let x = B—lzl, so that Bx = z;. To compute x, recall that
Zq = (l,l,O,O,O,O,O)t and use row operations to transform the
matrix (B’Zl) into the following:
-
' [ . : : : : : 1
> . a
' 1 1 1
3 FAd3 = |
, 1
& n 5
. . - g}é n}z - .
1
. . . . nd(n_g) . . .
. . . . . 1 . .
- . . . . . n(n_g) —3-2-_€J
Back substitution then shows that
o el D= = 3 <&
2R (2: H, 2£(n = E)? 0, 05 05 m)
where the value of the second entry u 1is immaterial for our
purpose. L& follows that
0! j—-1 - i-1 & -
p'x = 31, 0, g7 Lz 2, 0, 0, 0, n* ~ &5 2),
whence the successive entries of 22j+l = BD'x are
goglad + 1) =1,
& 1 -1 j~-1
822(2{) e B g' v m[wgi‘j S llln'lJ Fal iy
: PO | 1 J J
801(23 + 1) it ETn—_-__&:T[E n = 32 = n"kE = 3))s
. i - 3 = 0
g11(2,3 + 1) ;7,31(2;5 + 1) ?’36(2‘) + 1) O and




£+ D) = - 3+ 7ol 5E - 8T - 3 - 60 - wnd e - D).

By simple manipulation and use of the fact that £&n = 10,
the formulae for grs(ZJ + 1) stated in 2.4 are derived from

the ones just obtained. Note, for example, that
A5 BT ) PR e L [ "
S glwga {n = 3) wnn (€ - 31

3
n-¢&

[(n-12m8)nd ™t - (g2-12e48) 6377 - ﬁ%%[(n2—12n+8>nj‘2 - (g2-12e48)E372)

= 3(cj+l—12§j+8;j_l) - 10(;j—12gj_1+8§j_2) = 3;j+1 - ascj + 1445j_1 - 80§j_2.

The formulae for grs(2j) follow from the formulae for grs(2j-l)

and the fact that z2j = Az2j—l' O

2.5 THEOREM. For even n > 2 the number of isomorphism types of

rooted n-seines is %(-1 + 38,50 = 58 (n-2)/2°

Proof. Since 0, the number in question is

iE vy - U
g3l(n) + g36(n). Use 2.4. 0
By 2.5 there are 14 types of rooted U-seines. The 8 types
(S,x,y) shown in Figure 4 are reversible, meaning that (S,x,y)
isomorphic with (S,y,x). The 3 types shown in Figure 5 are
nonreversible. The remaining 3 nonreversible types are of the

form (S,y,x) where (S,x,y) 1s as in Figure 5.

(Figure 4 18 to be inserted here)

Fig. 4: The eight types of reversible rooted U-seine (S,x,y)

(Figure § 18 to be inserted here)

Fig." 5: Three of the six types of nonreversible rooted lU-seine (S,x,y)
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A 1link is any of the five graphs shown in Figure 6. In each link

L, the six nodes are partitioned into a set Lw of three white nodes

and a set Lb of three black nodes. When G 1s a link and p a

node of G, or G 1s a k-start and p e Pk’ the node p is matched
if its G-valence is 2; otherwise the G-valence of p 1is 1 and p

is unmatched. Each reversible rooted n-seine can be formed, for some

r between 0 and 3, by amalgamating a link L having r unmatched

white nodes with two copies, T, and T of an (n/2)-start of

W b
reach r. In the amalgamation, L's unmatched white <resp. black>

nodes are ldentified with the matched nodes of Tw<resp. Tb> and L's

matched white <resp. black> nodes are identified with the unmatched
nodes of Tw<resp. Tb>. In Figure U4, five of the examples use the
1link L5; the last examples on the successive rows use L3, L and

3

L respectively.

2
(Figure 6 18 to be inserted here)

Ll L2 L3 LH L

Fig. 6: The five links

2.6 THEOREM. For even n> 4 the number of isomcrphism types of

reversible rooted n-seines is

1}
=

13 ;
5(1 + 21;J) - uu;J_l + 30z, , when n j and

) + 5¢ when n = 4, + 2.

i

Proof. For each 1link L having r unmatched white nodes, and
for each (n/2)-start T of reach r and specified style, the
number of 1isomorphism types of reversible rooted n-seines that can
be formed by amalgamating L with two copies of T 1s shown in the

table of Figure 7.




Link number Reach of start Style of start Number of types
il 0 1 1
1 0 6 ;4
2 1 1 1
3 1 ik 2
4 2 1 2
! 2 2 1
5 3 1 it
5 3 6 1

Fig. 7: Number of types of reversible rooted n-seines yielded by

certain amalgamations

Justification of the table is facilitated by a more formal
description of the amalgamation process for forming reversible rooted
n-seines. For each link L, 1let A(L) denote the set of all auto-
morphisms o of L such that aLw = Lb' For each k-start T and
each @ € A(L), let W(T,2) denote the set of all one-to-one
mappings Ww: Pk e Lw‘ such that

(a) w carries matched <resp. unmatched> nodes of Pk onto
unmatched <resp. matched> nodes of Lw, and
(b) the mapping T P, > P, belongs to the end group of T.
Note that if W(T,a) # # then by (a) the reach of T 1s equal to the
number of unmatched white nodes of L. For T, L, a and w as
described, with 2k = n, the reversible rooted (2k)-seine

R = R(T,L,a,w) 1is constructed in the manner seét forth in the next

paragraph.




Let ¢ be an isomorphism of T onto a graph T' that is
node-disjoint from both T and L. Let u be an automorphism of

T whose restriction to P, 1is w ‘a’w. Let x' = ¢(x), Pl = ¢P!,

k
and define the mapping B: P} + L, by B = awu—1¢_l. The graphs

T,L and T' are amalgamated to form an n-seine S by identifying,

as an individual node of S, each of the pairs {p,w(p)} for p € Pk

and each of the pairs {p',B8(p')} for p' ¢ Pl. To see that the

rooted n-seine R = (S,x,x') 1is reversible, let y{(q) = ¢(u(g)) for

1

¢éach node q of T and w(g*') = ¢ (q') for eaeh node gq' of T'.

Plainly ¢ 4s an automorphism of T uvu T' that interchanges x ' and

x'. By means of the identifications, ¢ 1is defined also on the nodes
of = L.l en Lw’ Vv o= B¢uw'1, which is equal to a Dbecause
B = awu_l¢'l by definition. And since wuw—l = a2, on L it is
true that

v = w¢—18-1 = w¢_l¢uw_la_l = wuw_la_l S

Thus ¢ is an automorphism of S and an isomorphism of (S,x,x"')
onto (S,x',x). A straightforward argument shows that every
reversible rooted n-seine can be constructed in this way.

In justifying the rows of the table in Figure 7, let the nodes
of the k-start T that belong to Pk be denoted by 1, 2 and 3. It
may be assumed without loss of generality that the matched members of
Pk have smaller indiceg than the unmatched members, and then because

of the symmetries of L it may be assumed that the identification of

P, with those of L 1s as shown in Figure 8.

(Figure 8 is to be inserted here) 1

Fig. 8: 1Identification of nodes of Py with white nodes of link Li

7 ey T o T g e ————g et ————_ ———
, P—_— . i
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Now recall that o is an automorphism of L for which

Lo =5 whence o interchanges the sets Lw and Lb' Consider

W Bt
first the case in which T 1s of style 1, whence a2 is the
identity. 1In the case of Ll this fixes a and hence (for a given
w and ¢) also fixes B, so that only one type of R(T,L,a,w)
emerges. In the case of L2 there are two possibilities for a and
hence for B8, but the two pairs of identifications (w,B) are

equivalent under the automorphism group of L and thus only one

2
type of R emerges. In the case of L3 or LU’ o 1is fixed and
hence B 1is fixed but (as shown in Figure 8) there are two essentially
different possibilities for w; ¢thus in each case two types of R
emerge. In the case of L5 the four possibilitles for a 1lead to

the four possibilities for (w,B) indicated in Figure 9 and hence

to four different types of R.

(Figure 9 is to be inserted here)
Fig. 9: Different identification pairs (w,R) when L 1is L

and T 18 of style 1

Only the second, sixth and eighth rows of the table remain. The
number of possibilities for o is 3, 1 and 6 respectively. However,
because of the nature of T's and groups, in each case only a single
type of R -emerges.

From the table it follows that the total number of reversible

rooted n-seines 1is

(Bg1 * Bog * 3817 *+ 2851 * Byy * YBgy + B36)(0/2),

whence the stated formulae follow with the aid of 2.4. [




3. THE NUMBER OF UNROOTED (d - 1)-SEINES FOR ODD d
This section also comes under the

STANDING HYPOTHESIS: d = n + 1, where n is an even integer > 2.

Each diametral pair {x,y} of nodes of an n-seine S 1is joined
by at least one set of three independent paths of length 4, and for
a given {x,y} there may be more than one such set of paths. It is
often convenient to pick a particular set A = (x,al,...,an,y),

B = (x,bl,...,bn,y), C = (x,cl,...,cn,y) and carry on the discussion
with respect to it. Note that, in the matching involved in the
definition of a simple n-seine, ai is matched with one of the six

points bi-l’ b., b there bteing two exclusions

L R e

when 1 1s 1 or n. This fact is used frequently without explicit
reference.

Each diametral node x of an n-seine belongs to a unique
diametral pair {x,y}, but there may be diametral pairs disjoint from
{x,y}. An n-seine with more than one diametral pair is called
ambiguous. The first 2-seine in Figure 2 has four diametral pairs.

It is in that respect an anomaly, as the following result shows.

3.1 THEOREM If S 1is an ambiguous n-seine for even n > U, there

are cliques {x,x',w} and {y,y',z} in S such that

Gs(x,y) = Gs(x',y') = n+l, ds(w,z) i SR L

and {x,y} and {x',y'} are the only diametral pairs of S.

Proof. Let {x,y} and {x',y'} be distinct dliametral pairs of
S and let A = (x,al,...,an,y), B = (x,bl,...,b“,y) and

c = (x,cl,...,cn,y) be three independent paths from x ¢to y. Since




1
| Gs(x',y') = d and each pair of the paths forms a circuit of length

¢, the sequence (aj’cr’cr+l""’°k) is a path of length

)

matched with br and e with bs’ where

k

|lr = s| +2>4d - 2.

F P =2 {a2,b1} is an edge, whence a;
for if it were there would be no admissible mate for c¢

>

i t

and (a2,al,ct,.. ) 1is a path of length < d from x'

"2%q-2

e

= ags vyt = e . ‘and {al’bl}’ {Cn’bn} are edges of S.

n

n

also, for future reference, that a, is matched with Cys

are vertical.

(Figure 10 is to be inserted here)

Fig. 10: Labeled representation of an ambipuous n-seine for

2d, it may be assumed without loss of generality that x' = aJ

<d,

the situation is similar if Cx is matched with a_.. Hence

1t follows that r =1 and s =n, whenee J 48 1 ‘or 2.

1
a is matched with ¢ for © ¢ {1,2}, whetice (with n > 4) £t < 4 - 2

sSince this is cecontradictory, it follows that J = 1. That is,

and z=0b_ , {x,x',w} and {y,y',z} are the desired cliques.

and

yro=tg, ‘With J * k ®=d ‘and ‘1 < J 5 k2 n. If aj is matched with

and

aj is

is not matched with

Thus

tor Sy

With w =

Note

for
otherwise a, is adjacent to {b2,b3,cz,c3} and a path of length < d
from x' to y' is created. Similarly, c¢,_; 1s matched with a,
Thus S 1s as shown in Figure 10. Further, all additional edges joining
C to A have positive slope (in terms of the geometric representation

chosen), while those jolning B to C or A have positive slope or

n >4

At this point a certain relationship of {x',y'} to {x,y} has

been established. A third diametral pair {x",y"} would bear this




3.3

same relationship to both {x,y} and {x',y'}, whence
{x",y"} = {w,z} for (with n > 4) w and 2z are the only two nodes
adjacent to both {x,y} and {x',y'}. 8ince {w,z} 4is not diametral

it follows that {x,y} and {x',y'} are the only diametral pairs. [

{ It follows from 3.1 that the number of isomorphism types of rooted

n-seine that arise from a given ambiguous n-seine is at most 4. It is
1 for each of the 2-seines, 2 for the upper right 4-seine of Figure 4
(which is ambiguous and is isomorphic to the cne on its left), and 4
for the ambiguous 8-seine of Figure 1ll. In order to use 2.5 and 2.6

in counting the total number of n-seines we must determine, for each

T € {1,2,3,U}, how many types of ambiguous n-seine yield precisely

t types of rooted n-seine. That is done by first counting the number
of type; of rooted ambiguous n-seines and then taking symmetries into

account.
i (Figure 11 is to be inserted here)

i Fig. 11: An ambiguous 8-seine that yields ! different types of rooted
i 8-seines
|

E

t For a rooted n-seine R = (S,x,y) and for 1 <1 <n, let K,
|

{

i denote the set of all nodes v of S such that 5S(x,y) = 1i; the
' members of Ri are sald to be of level i. Note that |R1| =3 for
each 1, and each Ri is carried onto itself by each automorphism of

R. For each interval I of integers in [1l,n], let RI =\ An

ieIRi'
2-block of R, or block of length &, is an interval I < [1,n] such

that

i
&
|

(a) |1] = 2,




3.4
(b) for each p € Ry, at least two of the three S-neighbors of
p also belong to RI’ and
(¢) I 1is minimal with respect to (b).

Plainly each block-length is even. The specification of R 1is

the sequence H = (hl,...,hb) of half-lengths of the successive blocks.
Thus z?=lhj = n/2. For the 8-seine S of Figure 10, the specification
ef oSie. ) te (20301 and of (S8xv.ytY 48 (1.3).

A rooted n-seine R = (S,x,y) 1s rigid if S admits only one set
of three independent paths from x to y. A switch is a 2-block I
such that for eaeh 1 ¢ F, no edge of & Jolns two points of RI;
equivalently, each node in either of the two levels represented in RI
has two neighbors in the other level. A cross is a set of four nodes
that span a circuit whose nodes alternate between two levels. The
nonrigid rooted 1l0-seine shown below has a switch in levels 3-4 and a
cross 1in levels 8-9. The U-circuit in levels 6-7 does not correspond

to a cross because its nodes do not alternate between two levels.

(Figure 12 is to be inserted here)

Fig. 12: A nonrigid rooted 1l0-seine having one switch and one cross

Let us say that a rooted n-seine R = (S,x,y) 1s canonically

labeled when each node other than x or y has been assigned a unique

label from the set U~ '{ai,bi,c } in such a way that

i=1 i

A = (x,al,...,an,y), B = (x,bl,...,bn,y) and C = (x,cl,...,cn,y) are

independent paths from x to y and {al,b]}, {01’32} are edges of S.
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3.5

3.2 PROPOSITION Suppose that R 1is a rooted n-seine (S,x,y). Then

(a) R admits a canonical labeling if and only if R does not

have a switch in levels 1-2;

(b) R 1is rigid if and only if R has no switches and no crosses;

(¢) if R 1is rigid then R admits a unigue canonical labeling;

(d) if R 1is rigid then the identity is the only automorphism

Proof. Assertions (a) - (c¢) are almost obvious and are left to the
reader. For (d), let R be canonically labeled and note that

{x,a bl} is the unique 3-clique containing x, whence each automorphism

1°
of R carries the set {al,bl} onter 1tself:" But then cq is carried
onto itself because levels are preserved, and a, is carried onto
itself because it is the only node in level 2 that has two neighbors in
level 1. When R i1s rigid this implies A ‘15 carried onte A and

C onto >y Whence B 1is carried onto B and the automorphism is

the identity. i

3.3 PROPOSITION If hl,.. b

n/2, the number of isomorphism types of rigid rooted n-seines with

specification (hy,...,h ) is gP-1,n-b=1

. ,h are positive integers whose sum is

Proof. It follows from 3.2 that two rigid rooted n-seines are
isomorphic if and only if the correspondence of their node-sets given
by the canonical lsbelings is an isomorphism. Thus it remains only to
determine the number of matchings M which are of the sort involved
in the definition of an n-seine, have neither switch nor cross, match

with b anc¢ ¢ with a and generate blogks acbording to

1 1 1
the specification (hl""’h

a 29

u )



EE hi = 1 the part of the n-seine corresponding to the first
block is already determined. If hi > 1 there are 2 ways of choosing

the two edges ¢f M that join R2 to R3,

the single edge of M that joins R3 to RU’ +++, and hence a total

then 2 ways of choosing

2h1-2

of 2 ways of completing the first block. For each subsequent

block of length Ehi, there are 6 ways of choosing the single edge
of M that joins the first two levels of the block and then (as when

2h.-1

s 1) 3 ways of completing the block. Thus the total number of

rigid rooted n-seines with specification (hl""’hb) is
b

2z, (hy-1) b1

girts S

n-b-1

3.4 PROPOSITION Except for the first 2-seine, each rooted ambiguous

n-geine is rigid. If n > 4§ and hy,...,h —are positive integers

whose sum is n/2 there is a unique isomorphism type of rooted

ambiguous n-seine with specification (hl,...,hb).

Proof. Consider a rooted ambiguous n-seine R = (S,x,y) with
n >4, let (x',y') be as in 3.1, and note that by the proof of 3.1
R admits a canonical labeling in which x' = aq and y' = Che To
show R 1s rigid, refer to Figure 9 and note that if there is a switch
or cross then Gs(x‘,y') < oy

The proof of 3.4 ié completed by working through the successive
levels to show that the remaining edges of M are uniquely determined

by the specification (h .,hb) in conjunction with the fact that

190"

§.(x',y') = d. 1Indeed, the following properties of R can be verified
[}

by induction on 1i:




3-7
a block begins at level i if and only if {ai,bi} is an edge;

a block ends at level i if and only if {bi’ci} is an edge;

for each odd 1i, {ci’ai+l} is an edge;

for each even 1 that does not end a block, {b } and

102441

{ci’bi+l} are edges. 0

The next result could also have been proved by a recursive

procedure similar to the one used in proving 2.5.

3.5 THEOREM The total number of isomorphism types of rigid rooted

n=seires is of these, are ambiguous.

m-1

( .
‘b-l) is the number of

Proof. Let m = n/2 and recall that
ordered partitions of m into b positive integers. By 3.3 the

number of rigid rooted n-seines is

2m-2_m m-1,,3yb-1 _ ,2m-2
dina el R

and by 3.4 the number of rooted ambiguous

m m=ds - =1
By lpaq? =2 7.

For each finite sequence H = (hl,...,hh} let HP? denote the

reverse sequence (hb,...,hl). Ef g i the specification of « (Shx.¥y)

then HP 1is the specification of (§,y,x). An unrooted n-seine S

is called symmetric if it admits an automorphism interchanging the
two nodes of a diametral pair. If {x,y} 1is the pair in question
and H 41is the specification of (S,x,y) then H? = H. Each
unambiguous n-seine S yields 1 or 2 isomorphism types of rooted

n-seines according as S 1is or is not symmetric. However, for




3.8

ambiguous n-seines the situation is more complicated and 1is elucidated
with the aid of some additional operations on sequences.
For each finite sequence H of positive Integers let H* denote
the sequence obtained from H by doing the following:
replace each maximal segment of 1's in H by -r, where r 1is the
number of 1's in the segment;
insert a 0 between each pair of consecutive entries > 1.
For example, if
H Cl T el by n. 0,1 4.5)

(—3,7,0,2,—1,3,—2,“,0,5).

I

then g

B be obtained from K

For each finite sequence K of integers let K
by the simultaneous replacement of each entry k of K as follows,
where s 1s the number of neighbors of the entry in K -- that is,
s =0 1if there is only one entry, else s = 1 for the first and last
entries and s = 2 for all intermediate entries:

i ke <20 Fepilace e by Sng s By

if k > 2 7zreplace 'k Dby 'a segment of K = 8 1%,

Moy example, if H ‘and H* are as above then

.

[ e IR W s e B - 9% SR B O < 0 WP [P 5 O G

HaB

HO.BOL o (Ll,—5,2,0,3,—1,“,-2,2,—“),
qaBaB

and (i I L e TR R SR e &

It can be proved directly, or as a corollary of 3.6 below, that

HaBaB = H for every finite sequence H of positive integers.

3.6 PROPOSITION If S8, %, ¥y, ' and y' @&re as in 3.3 and H i

the specification of (S,x,y) then HaB is the specification of
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3.9

(S,x',y). In particular, the specification of (8,x,y) starts with

1 if and only if the specification of (S,x',y') does not start with 1.

Proof. Let (S,x,y) and (S,x',y') be canonically labeled

using labels a bi and Cy in the first case and labels ai, bi

i,

and ci in the second case. Then the pairs of labels attached to the

various nodes of S are those appearing in corresponding positions in
the following two lists:

tatal ae salg? I s e e b Lxr LN o Ao

X ala2 any 9K bl bny 3 X c1 (¢)

c' 1
n-1 ny

b .

a, xc n—lcn’al 1 --bncn,ala2-~'anycn.

1 loolc

The desired conclusion is a consequence of this correspondence in
conjunction with the properties of (S,x,y) 1listed at the end of

the proof of 3.4 and the analogous properties of (S,x',y'). il

3.7 PROPOSITION If S, x, ¥y, x' and y' are in 3.1 and H is

jab]
(9]

l

o
~H

f (S,x,y) then exactly one of the following

the specification

statements is true:

(a) H # H® # HQB, S admits no nontrivial automorphism;

(b) HP = H, S admits a unique nontrivial agutomorphism, and it

interchanges x with y @&and x' wlth y';

(¢) HP = HaB, S admits a unique nontrivial automorphism, and it

interchanges x with y' and x' with Y.

Proof. If {p,q} and {u,v} are diametral pairs in S and ¢

and n are automorphisms of S <that carry p onto u, then gn-l

is an automorphism of the rooted n-seine (S,p,q), whence & = n




by s de Q) S e

carries x onte x'.
3 there is an automorphism ¢

there is an automorphism vy

no other automorphisms of S except the identity.

3.4 and 3.6 it follows that:

u

¢ exists if and only if HP

with o v and i wlt awiEh Lyt

U4

¢ exists if and only if HP

%, wikEh' ytcands i oWk the s

¢ and y do not both exist, because

An unrooted n-seine S

condition (c) is satisfied.

n-seine is both symmetric and skew-symmetric.

(Figure 13 is to be inserted here)

(S,x,y)

Bl s

is of specification (2)

(Figure 14 is to be inserted here)

(S,x,y) is of specification (2,1)
Pig. 14:

It follows from 3.6 that no automorphism of S
Thus perhaps
of S
GRS

but there is at most one such ¢, at most one such ¢y, and there are

is called skew-symmetric if n > 4 and

(See Figures 13 and 14.)

Two views of a symmetric ambiguous 4d-seine

310

kS S NS

that carries x onto 'y, or

that carries x onte yt,

With the aid of
and ¢ actually interchanges x
and vy

actually interchanges

HOB % H., ]

By Sieiliy o

(S,xt,y') 1s of specification (1,1)

(8,xt,y') 18 of specification (1,2)

Two views of a skew-symmetric ambiguous 6-seine

The following result sharpens the second part of 3.5.




3.8 PROPOSITION If y <resp. y

A, yg> is the number of rooted

ambiguous ii-seines for which the specificaticn starts and ends with

a 1 <resp. starts but does not end with a 1, neither starts nor ends

with a ' 1%, - then v, = ), = g = 1, Y5 y4 = ¥ # 0, apd for all

]
ry=

n > 6,

Proof. The initial conditions are obvious. From the second part

of 3.6, applied to ends as well as starts, it follows that iy y;

when n > 4. 1In view of the second part of 3.l, the following .

recursions are obvious: yé+2 = y!

m". - Ay 1 n m
L e oy oy s The

n

stated conclusions follow by induction. I

3.9 S PROFPGSIETEONSTERE dn <resp. 6é> is the number of rooted symmetric

n-seines for which the specification starts and ends <resp. neither

starts nor ends> with 1, then 6, = 1, 6 = 0, and for all n > Ui,

sl
g Slar e gl dhled
n n
Proof. By 3.7 and the second part of 3.6, Sn = éé for all
n> 4. In view of 3.1, 6n+u = 6n ot GA. Use induction. i

3.10 PROPOSITION If € <resp. €,'> 1is the number of rooted skew

n e

symmetric n-seines for which the specification starts <resp. does

not start> with 1, then €, = €} = 0, and for all n > 4,
LE21220 3 2 AR g A

2 — i

0 when n

1
n n
2Ln/UJ—1

™
n
m
]
o
=
(o)
R
=

=
D
i
ro
5
(@]
ol




!

Proof. By 3.6, £, en' for all n > 4., To complete the
proof, note that €5, = 52' = 0 €y = Qi Bpe ™ 1, and use induction in

= ' = 1
conjunction with the recursion €+l e 4 € That €+l e + e

for atl - m > 8 1is a consequence of the following property of the
operators p, a and B°

If the sequence H = (hl,...,hb) of positive Integers satisfies
the condition that HP = HaB then the same condition is satisfied by
the sequence (l,hl,.. h hb+l); when b > 2 and hl = 1 the

LA b_l,
condition is satisfied also by the sequence (hP”"’hb-l’hb—l)' 0

3.11 THEOREM Let by s wn and Wy denote the respective numbers of

ambiguous n-seines, of symmetric ambiguous n-seines, and of skew

symmetric ambiguous n-seines. Then ¢, = U, = ¢, = ¥ = 2,

Yo W oo =0y HHE

for all even n > 4, b, = 2Ln/uJ—1

R0 gl Sve i o e iy el LR according as n = 0 or
2 mod 4,

for all even n > 6, ¢n = Z(n'6)/2 i 2L(n—2)/hJ.

Proof .  Use 3.9 and’ 3080 for wn and W, With An ¢n - wn -w

it follows from 3.5 aad 3. thau

: - 5(n=2)/2
Mxn + 2¢n + 2wn = 2
whence
- 2 ik it
L Lige il i R

and the stated equality follows. [

]

e T R

e

s S B
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3.12 THEOREM.

2.13

Let o denote the number of isomorphism types of

n-seines and 'fn the number of isomorphism types of symmetric

n-seines. Then for all even n > 6,

2
5(1 + 21cj) - U4 +

I
L E gt

and
3
3523
Ty ™ _
3c 5
§=25+1

BEroof. Let O wn’ w

el

5 3 e
C B e

n

and A
Il

s

i
TadidemE, e

-1

uj‘l X

be as in

e 2l, _ S pdT
el iy Soa st s T Y

n U j

n Iy + 2

“when n = Uj

ib 3

+ T when n

Fllis Tand det pn

denote the number of isomorphism types of reversible rooted n-seines.

Each unambiguous symmetric n-seine yields a single type of reversible

rooted n-seine, and by 3.7 each ambiguous symmetric n-seine yields

two such types

the above equation for o

(assuming n > 4). Hence

(o

follows from 2.6 and 2.11.

n

- %) + 20 =p_ and

Similarly,

n

is a single type of rooted n-seine associated with each unambiguous

symmetric n-seine, there are two.such types ascsociated with each

n-seine that is unambiguous and asymmetric or ambiguous and symmetric

or ambiguous and skew-symmetric, and there are

four such types associ-

ated with each n-seine that is ambiguous but neither symmetric nor

skew-symmetric

(

is the number

The stated conclusion then follows with the aid of 2.5,

value of cn

. 1t follows that for even

T 11’n) 2 2(Tn = By

n

>

]
1

’

o s ) 1
(on wn>) 3 “wn 4 2wn % 1An

P of isomorphism types of rooted n-seines, whence

2%, = P = 2¢n + wn i an

n

already established. (]

{

(o]

n'

3.11 and the

there
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